Comparison of Structural Defects between Optic Disc and Ganglion Cell Complex in Patients with Glaucoma

Main Article Content

Ilias Georgalas
Sergios Taliantzis
Maria Kazaki
Eva Papaconstantinou
Elina Panagiotopoulou
Dimitris Papaconstantinou
Georgios Labiris

Abstract

Purpose: To evaluate the agreement of glaucomatous structural defects of the ganglion cell complex (GCC) detected with the spectral domain optical coherence tomography (sdOCT) with the optic nerve head alterations detected with the Heidelberg retina tomography (HRT), of glaucoma patients with ocular hypertension or open angle glaucoma.

Material and Methods: Ninety patients eyes with structural glaucomatous defects were enrolled. All of them underwent imaging examination of GCC with sdOCT and the optic disk with HRT. The Cohen's kappa coefficient of agreement was used.

Results: The agreement between the optic disc and GCC using the parameters of the programs analysis of the HRT, the moorfields regression analysis (MRA) and glaucoma probability score (GPS) was not significant. Instead between MRA and GPS a good agreement was calculated. Significant agreements were found between MRA and GPS on one hand and GCC on the other, considering location and length of the glaucomatous damage, while non significant agreements were found between GPS and GCC for the location and the length of the glaucomatous structural defect.

Conclusions: There is no significance (Please explain further if you are referring to significance in terms of the difference, similarity or agreement) between HRT and sdOCT for the detection of the glaucomatous damage between the optic nerve head and the ganglion cell complex. Instead MRA and GCC detect comparable areas and lengths of the glaucomatous damage. On the other hand GPS records larger deficits relative to MRA and has not a significant agreement with the study of GCC.

Keywords:
Complex, ganglion cell, glaucoma probability score, HRT, moorfields regression analysis, OCT.

Article Details

How to Cite
Georgalas, I., Taliantzis, S., Kazaki, M., Papaconstantinou, E., Panagiotopoulou, E., Papaconstantinou, D., & Labiris, G. (2019). Comparison of Structural Defects between Optic Disc and Ganglion Cell Complex in Patients with Glaucoma. Ophthalmology Research: An International Journal, 10(4), 1-7. https://doi.org/10.9734/or/2019/v10i430114
Section
Original Research Article

References

Khawaja AP, Viswanathan AC. Are we ready for genetic testing for primary open-angle glaucoma? Eye (Lond); 2018.

Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989; 107(5):453-64.

Peters D, Bengtsson B, Heijl A. Lifetime risk of blindness in open-angle glaucoma. Am J Ophthalmol. 2013;156(4):724-30.

Fernandez Lopez E, Karaca EE, Ekici F, Waisbourd M, Spaeth GL. Symptoms reported by patients with varying stages of glaucoma: Review of 401 cases. Can J Ophthalmol. 2014;49(5):420-5.

Maria Kazaki, Ilias Georgalas, Alexandros Damanakis, Georgios Labiris, Sergios Taliantzis, Chryssanthi Koutsandrea, Dimitris Papaconstantinou. Vision-related quality of life in ocular hypertension patients: Effects of treatment. Open Journal of Ophthalmology. 2015;5:31-40.

Blumberg D, Skaat A, Liebmann JM. Emerging risk factors for glaucoma onset and progression. Prog Brain Res. 2015; 221:81-101.

Choi YJ, Jeoung JW, Park KH, Kim DM. Clinical use of an optical coherence tomography linear discriminant function for differentiating glaucoma from normal eyes. J Glaucoma; 2015.

Na JH, Lee K, Lee JR, Baek S, Yoo SJ, Kook MS. Detection of macular ganglion cell loss in preperimetric glaucoma patients with localized retinal nerve fibre defects by spectral-domain optical coherence tomo-graphy. Clin Exp Ophthalmol. 2013;41(9): 870-80.

Le PV, Tan O, Chopra V, Francis BA, Ragab O, Varma R, Huang D. Regional correlation among ganglion cell complex, nerve fiber layer, and visual field loss in glaucoma. Invest Ophthalmol Vis Sci. 2013;54(6):4287-95.

Na JH, Lee K, Lee JR, Baek S, Yoo SJ, Kook MS. Detection of macular ganglion cell loss in preperimetric glaucoma patients with localized retinal nerve fibre defects by spectral-domain optical coherence tomo-graphy. Clin Experiment Ophthalmol. 2013; 41(9):870-80.

Renard JP, Fénolland JR, El Chehab H, Francoz M, Marill AM, Messaoudi R, Delbarre M, Maréchal M, Michel S, Giraud JM. Analysis of macular ganglion cell complex (GCC) with spectral-domain optical coherence tomography (SD-OCT) in glaucoma. J Fr Ophtalmol. 2013;36(4): 299-309.

Arintawati P, Sone T, Akita T, Tanaka J, Kiuchi Y. The applicability of ganglion cell complex parameters determined from SD-OCT images to detect glaucomatous eyes. J Glaucoma. 2013;22(9):713-8.

Moreno PA, Konno B, Lima VC, Castro DP, Castro LC, Leite MT, Pacheco MA, Lee JM, Prata TS. Spectral-domain optical coherence tomography for early glaucoma assessment: Analysis of macular ganglion cell complex versus peripapillary retinal nerve fiber layer. Can J Ophthalmol. 2011;46(6):543-7.

Bresciani-Battilana E, Teixeira IC, Barbosa DT, Caixeta-Umbelino C, Paolera MD, Kasahara N. Correlation between the ganglion cell complex and structural measures of the optic disc and retinal nerve fiber layer in glaucoma. Int Ophthalmol; 2014.

Teixeira IC, Bresciani-Battilana E, Barbosa DT, Caixeta-Umbelino C, Paolera MD, Kasahara N. Correlation between the ganglion cell complex and functional measures in glaucoma patients and suspects. Int Ophthalmol; 2014.

Anraku A, Enomoto N, Takeyama A, Ito H, Tomita G. Baseline thickness of macular ganglion cell complex predicts progression of visual field loss. Graefes Arch Clin Exp Ophthalmol. 2014;252(1): 109-15.

Miglior S, Zeyen T, Hoffmann EM, Torri V, Rulli E, Floriani I, Poli D, Aliyeva S, Cunha-Vaz J, Pfeiffer N. Predictive value of heidelberg retina tomograph parameters for the development of glaucoma in the European glaucoma prevention study. Am J Ophthalmol. 2015;159(2):265-76.e1.

Weinreb RN, Zangwill LM, Jain S, Becerra LM, Dirkes K, Piltz-Seymour JR, Cioffi GA, Trick GL, Coleman AL, Brandt JD, Liebmann JM, Gordon MO, Kass MA; OHTS CSLO Ancillary Study Group. Predicting the onset of glaucoma: The confocal scanning laser ophthalmoscopy ancillary study to theOcular Hypertension Treatment Study. Ophthalmology. 2010; 117(9):1674-83.

Schrems-Hoesl LM, Schrems WA, Laemmer R, Horn FK, Juenemann AG, Kruse FE, Mardin CY. Confocal laser scanning tomography to predict visual field conversion in patients with ocular hyper-tension and early glaucoma. J Glaucoma; 2014.

Wollstein G, Garway-Heath DF, Fontana L, Hitchings RA. Identifying early glau-comatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. Ophthalmology. 2000; 107(12):2272-7.

Harizman N, Zelefsky JR, Ilitchev E, Tello C, Ritch R, Liebmann JM. Detection of glaucoma using operator-dependent versus operator-independent classification in the Heidelberg retinal tomograph-III. Br J Ophthalmol. 2006;90(11):1390-2.
[Epub 2006 Jul 26]

Rao HL, Yadav RK, Addepalli UK, Begum VU, Senthil S, Choudhari NS, Garudadri CS. Comparing spectral-domain optical coherence tomography and standard automated perimetry to diagnose glaucomatous optic neuropathy. J Glaucoma; 2014.