Efficacy Theory and Proposed Protocol for Presbyopia Correction using Scleral Softening by Non-invasive Infrared Diode Lasers

Jui-Teng Lin a*

a New Photon Corp. Cayman Islands; and Medical Photon Inc., New Taipei City - 242, Taiwan.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/OR/2022/v16i430243

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/88320

Received 06 June 2022
Accepted 15 July 2022
Published 16 July 2022

ABSTRACT

Purpose: To derive and provide analytic formulas and proposed protocol for accommodative gain of presbyopia eyes via laser scleral softening, which causes increased space between ciliary body and lens (SCL) and mobility of the posterior vitreal zonules (PVZ).

Study Design: To increase the accommodation of presbyopia by laser scleral heating/softening.

Place and Duration of Study: New Taipei City, Taiwan, between April 2022 and June 2022.

Purpose: To analyze the safety and efficacy of presbyopia treatment via scleral softening.

Methodology: The scleral softening efficacy is calculated based on the rate equation of scleral tissue with a rate coefficient given by an Arrhenius formula. Temperature spatial and temporal profiles are given by the numerical solutions of a heat diffusion equation with a volume heating source. Various effective depths including tissue damage depth, temperature penetration depth and conversion depth, governed by tissue absorption coefficient, light intensity and dose (or irradiation time), and the related threshold values, are introduced in replacing the conventional penetration depth based on a Beer’s law.

Results: Given the the temperature spatial and temporal profiles, scleral softening efficacy can be calculated. Scleral surface damage can be prevented by cooling window. The suggested protocol for scleral softening treatments include: a diode laser at about 1.45 to 1.5 µm or about 1.86 to 1.9 µm, or about 2.0 to 2.15 µm, wavelength (with absorption coefficient about 20 to 100 cm⁻¹); laser power about 0.2 to 0.8 W per spot, having a total of 4 to 16 spots; and irradiation time of 100 to 600
Results of corneal thermal shrinkage are demonstrated by the topography changes of pig eyes, in which the scleral softening does not affect the corneal shapes. The accommodative gain is proportional to the softening efficacy (Seff) of the scleral tissue after a thermal laser leading to the increase of PVZ mobility and SCL. However, the actual relation of Seff and the PVZ and SCL changes require measured data.

Conclusion: Safety and efficacy of scleral softening for presbyopia treatment depend upon the laser parameters (intensity, dose, spot size, wavelength) and the effective depths. By choosing the laser treated areas, a dual function treatment using scleral softening for presbyopia, and cornea stromal shrinkage for hyperopia is proposed and demonstrated by topography of pig eyes.

Keywords: Presbyopia; scleral softening; diode laser heating; efficacy; accommodation gain.

1. INTRODUCTION

The principles of presbyopia were given by the classical hypothesis of von Helmholtz [1-4] and Schachar [5-7] and the modern theory of Lin [8-12]. Non-traditional methods [5-14] for presbyopia correction, including scleral band expansion proposed by Schachar [5-7] and scleral tissue ablation via IR laser of Er: YAG (at 2.94 μm) and UV laser (at 266 nm) proposed by Lin [8-14]. The prior arts using laser scleral ablation suffer the drawbacks of being invasive, surgical bleeding, complex and slow procedure, having major postsurgical regression [11,14]. The prior art of US patent, Lin and Martin [15], proposed a non-invasive method using a gonio lens guided infrared laser to heat the zonules fiber of the eye for the treatment of presbyopia. However, there is no clinical studies were conducted based on this proposed method.

Comparing to the prior arts of laser scleral ablation [8-14], the new method (US patent pending by JT Lin) proposed in the present article for presbyopia correction may offer the advantages of: being noninvasive, non-surgical, no scleral bleeding, less pain, fast recovery and less (expected) post treatment regression. In addition, the diode laser system used in the new method is much more compact and reliable than that of Er:YAG, and can be coupled to a fiber splitter for multiple beam output for speeding procedure, noting that the fiber used in Er:YAG system suffers fiber damage and high cost for system maintenance.

The author recently presented the theory for accommodation gain (AG) for presbyopia eyes via lens reshaping and lens anterior shift and the increase of the space between the ciliary body and lens (SCL) and mobility of the posterior vitreous zonules (PVZ) [16,17]. However, the relation between AG and the temperature rise or softening efficacy (Seff) of of the scleral tissue after a thermal laser leading to these PVZ and SCL changes is not yet explored, in which a temperature rising to a range from about 65 °C to about 90 °C is required in order to weaken (soften) the scleral tissue.

We have recently developed a thermal modeling for corneal collagen shrinkage for a new procedure called corneal photovitrification (CPV) for vision improvement of age-related macular degeneration (AMD) eyes, by reduced hydration and increase modulus of the treated corneal stroma [18,19]. The above thermal model is extended for the calculation of scleral softening efficacy which depends on a rate equation for thermal heated tissue, and a rate coefficient given by an Arrhenius formula defined by the temperature rise of the treated tissue [18].

The temperature spatial and temporal profiles are given by the numerical solutions of a heat diffusion equation with a volume heating source. Various effective depths including the tissue damage depth, temperature penetration depth and conversion depth, governed by the tissue absorption coefficient, light intensity and dose (or irradiation time), and the related threshold values, are introduced.

The objective of the present article is to provide theoretical guidance and proposed protocol for the accommodative gain of presbyopia eyes via scleral softening which leads to the increased mobility of PVZ and SCL. Some predictions are demonstrated by the topography changes of pig eyes. By choosing the laser treated areas, we are able to propose a dual function treatment using scleral softening for presbyopia, and using cornea stroma shrinkage for hyperopia.

2. METHODS AND MODELING SYSTEMS

2.1 Temperature Rise

The temperature change of the scleral tissue due to light heating can be described by a...
The generalized heat diffusion equation

\[\nabla^2 T(z,t) - \frac{1}{\kappa} \frac{\partial T(z,t)}{\partial t} = -S(z) \tag{1.a} \]

where the laser heating source term, \(S(z) \), is given by

\[S(z, t) = \frac{A[t(1/t)z]}{K} e^{-Bz} \tag{1.b} \]

\(\kappa \) and \(K \) are, respectively, the thermal conductivity and diffusivity of the tumor. \(B \) is the extinction coefficient of the sclera (at a specific laser wavelength), which consists of two components: \(B = [A (A+2b)]1/2 \), with \(A \) and \(b \) being the absorption and scattering coefficients, respectively. In this study, we will focus on the role of the absorption term \((A) \), with \(b < a \), such that \(B = A \) in our calculations.

The above heat diffusion equation may be solved numerically under the initial condition: \(T(z,0)=T_0 \), and under the boundary condition (at \(z=0 \)) [20]

\[\left[\frac{\partial T(z,t)}{\partial z} \right]_{z=0} = \frac{h}{K} \left[T(t, z = 0) - T_b \right] \tag{2} \]

where \(h \) is the heat transport coefficient due to the air convection or heat sink cooling window of the scleral surface.

In a cw (or long pulse) laser operation, the laser-heated solution will reach a steady-state when the irradiation time is much longer than the thermal relaxation time and the steady state solution, for \(dT/dt = 0 \), is given by [21]:

\[T(z) = I_0 \left[1 - e^{-\Delta z}/(AK) \right] - (I_0/K + G) z \tag{3.a} \]

\[G = \frac{h}{K} \left[T_0 - T(t, z = 0) \right] \tag{3.b} \]

We note that the slope of \(T(z) \) is given by Eq. (3), which has an optimal \(z^* \) given by when \(dT/dz \) \((z=z^*)=0\), or \(z^*=1/A \) \(\ln [1/(1+KG/\beta)] \). When a sapphire window is contacted to the scleral surface, it has a room temperature \(T(t,z=0) =20^\circ \text{C} \), the heat flows from the warmer cornea (at initial \(T_0 \) approximately 35\(^\circ\) C) to the sapphire window such that \(G>0 \), initially and becomes \(G<0 \) later.

2.2 The Softening Efficacy

As reported that the accommodation gain \((AG) \) after the scleral softening is due to the increase of the space between the ciliary body and lens (SCL) and mobility of the posterior vitreal zonules (PVZ) [16,17]. For example, the PVZ length was reduced from 4.6 mm for a unaccommodative state to 3.6 mm (and 4.45 mm) in an accommodation state for a non-presbyopia (and presbyopia) eye, in which the SCL is about 0.68 mm and 0.35 mm for non-presbyopia and presbyopia eye, respectively. We expect that the \(AG \) is proportional to the softening efficacy \((\text{Seff}) \) of the scleral tissue after a thermal laser leading to the increase of PVZ mobility and SCL. However, the actual relation of \(\text{Seff} \) and the PVZ and SCL changes require measured data.

The scleral softening efficacy \((\text{Seff}) \) is defined by

\[\text{Seff} = 1 - M(z,t)/M_0 = 1-\exp(-S') \]

where \(M_0 \) is the amount of initial scleral tissue prior to the light irradiation, and \(M(t) \) is the amount of modified or softened scleral tissue after the laser heating, given by the solution of [18,22]

\[\frac{dM(z,t)}{dt} = -k(z,t)M(z,t) \tag{4.a} \]

\[k(z,t) = A_0 \exp(-E_a/[R(T + 273)]) \tag{4.b} \]

where \(k(z,t) \) is the rate coefficient given by an Arrhenius formula, Eq. (4.b), in which \(E_a \) (in J/mole) is the activation energy (for softening to occur) and \(R \) [in J/(Kmole \(^\circ\)C)] is the gas constant \(R = 8.314 \) (in J/mole/\(^\circ\)C) and \(T(z,t) \) is the temperature in \(^\circ\)C. Therefore \(\text{Ceff}=1-\exp(-S') \), with \(S' \) is the time integral of \(k(z,t) \).

The \(\text{Seff} \), In general, is both time \(t \) and depth \(z \) dependent due the light intensity penetration depth in the tissues which is inverse proportional to the tissue absorption coefficient. Therefore, a “volume” efficacy is required to define an actual conversion within the volume (area x depth) of light acting soft tissues. This is a new concept proposed in the present article. More details will be discussed later.

3. RESULTS AND DISCUSSION

We have previously published the numerical results for a anti-cancer lasers system [21,23] using nanogold as the absorber, in which a diode laser at 808 nm was used having laser irradiation time is about few minutes due to the rather low absorption coefficient of nanogold at about \(A = 3 \) to 5 cm\(^{-1}\) and a penetration depth at about \(Z_p = 1/A = 0.2 \) to 0.33 cm. A temperature increase of about 10 to 15\(^\circ\)C is required to kill the cancer cells. In comparison, in an eye system with scleral stroma under laser thermal effects, much
higher $A= 20$ to 25 cm$^{-1}$ and $Z_p= 0.4$ to 0.5 mm are involved and therefore a shorter irradiation time of about 250 to 500 ms is required for a temperature increase of about 40 to $60 ^{\circ}$C (from the initial sclera tissue of about $35 ^{\circ}$C). The numerical solutions of Eq. (1) and (4) require all the related parameters and properties of the heated soft tissues (corneal stroma or sclera). The present article will focus on the simplified and/or limiting cases such that analytic formulas are available for key features of scleral tissue softening. The numerical data of anti-cancer system will be scaled (in time and depth) proportionally to present the trends/features of an eye systems without repeating the complex numerical simulations (which will be shown elsewhere). The scaling process is based on the steady-state formula of Eq. (3.c), in which the $T(z)$ is a decreasing function of I_0z/K. Greater details are shown as follows.

3.1 Temperature Profiles

Fig. 1 shows the calculated temperature spatial profiles $T(z)$ at a given laser irradiation time of 500 ms for various $A=(15, 30, 60)$ cm$^{-1}$, with a fixed $I_0=100$ W/cm2. It shows that higher A leads to a higher peak temperature, but a smaller penetration depth, which is also demonstrated by Eq. (3).

Fig. 2 shows the calculated surface temperature profiles $T(t, z=0)$. For a fixed absorption coefficient (left figure), the temperature profiles has faster rising curve for higher laser intensity. Similarly, for a fixed I, it is a faster rising curve for higher A (right figure).

Fig. 3 shows the irradiation time needed (t') for $T(0,t')$ to reach a temperature of $60 ^{\circ}$C, for various $A=(30,40,90)$ cm$^{-1}$. It shows that t' is a decreasing function of A and I_0. Therefore, to reach a desired temperature, one may adjust the irradiation time (from 0.1 to 0.5 s) for a fixed laser intensity; or adjusted the intensity (from 100 to 200 W/cm2) for a fixed A (or laser wavelength).

Fig. 4 shows the calculated scleral surface temperature $T(z=0,t')$ vs. laser intensity, for $A=(15, 30, 60)$ cm$^{-1}$ (curves low to top) at a given laser irradiation time ($t'=0.5$ s). It shows that $T(0,t)$ is an increasing function of A and I_0. Therefore, to reach a desired temperature for a given irradiation time (t'), one may adjust laser intensity for a given A (or laser wavelength); or choose a laser wavelength (from 1.4 to 2.2 um) for a fixed laser intensity.

We note that the information provided by Figs. 1 to 4 provides the guidance to choose an appropriate laser wavelength (which also defines A), such that the desired surface (and volume) temperature could be reached by adjusting the combined parameters of (I_0, t'), with $I_0= (50$ to $200)$ W/cm2, and $t'= (0.1$ to $1.0)$ s. However, to protect the scleral surface layer, the appropriate laser wavelength must be in the range of 1.42 to about 2.2 um, having $A= 15$ to 100 cm$^{-1}$, such that the penetration depth (approximately given by $1/A$) is in the range of 100 to 650 um.

Besides the use of cooling window, a pulsed (on-off) laser with various off-time and a fixed on time could be used [21]. It shows that $T(t,z)$ is a decreasing function of the off-time due to the heat transport during the off-period. This controlled pulsed laser method can be tailored to optimize the efficacy and avoid surface damage,
Fig. 2 Calculated surface temperature profiles $T(z=0)$ (Left) for the effects of laser intensity, $I_0=(50,100,200)$ W/cm2, for curves right to left, for a fixed $A=60$ cm$^{-1}$. (Right) temperature profiles for a fixed $I_0=100$ W/cm2, but for various $A=(30,45,60)$ cm$^{-1}$, for curves right to left.

Fig. 3 The calculated irradiation time needed (t) to reach a surface temperature of 60°C, for various $A=(30,40,90)$ cm$^{-1}$, for curves from top to low, for an irradiation time of 0.5 s.

Fig. 4. Calculated surface temperature vs. laser intensity, for $A=(15,30,60)$ cm$^{-1}$ (curves low to top) at a given laser irradiation time ($t=0.5$ s).
3.2 Effective Depths

The conventional definition of light penetration depth \(z' \) is based on the Beer's law \(\exp(-Az) \), when \(Az=1 \), or \(z'=1/A \), which is an inverse function of the absorption coefficient \(A \). However, this simple definition can not describe the complete features of measured parameters such as the tissue damage depth \(Z_D \), temperature penetration depth \(Z_T \), and conversion depth \(Z_C \), which are governed by the parameters of light intensity and light dose (or irradiation time), and the related threshold values, besides the absorption coefficient \(A \). We propose the more rigorous definitions for \(Z_D \), \(Z_T \) and \(Z_C \) as follows.

As shown in Fig. 5, the temperature spatial profiles for various absorption coefficient \(A \), at a given irradiation time and under a cooling window for an initial surface temperature about 20\(^\circ\)C. Fig. 5 shows the following features:

(i) Larger \(A \) (shown by Curve-A) leads to a higher peak temperature, but a smaller temperature penetration depth \(Z_T \) defined by \(T(z=Z_T) = T(\text{peak}) \), which is approximately given by 1/A.

(ii) The tissue damage depth \(Z_D \) is defined by a threshold damage temperature \(T_1 \) about 50 \(^\circ\)C), therefore, large \(A \) (Curve-A) with a small \(Z_D \) has a better protection of the posterior layer (at about 500 \(\mu \)m) than that of small \(A \) (Curve-B and C), but it damages the anterior layer \(Z_1 \), about 70 \(\mu \)m. In contrast, Curve-C (with the smallest \(A \)) protects the anterior layer, but not the posterior layer. Curve-B having an optimal \(A \) protects both anterior and posterior layers.

(iii) The conversion depth \(Z_C \) is defined by threshold conversion temperature \(T_2 \) about 70 \(^\circ\)C) such that the rate constant, \(k(t,z=Z_C) \) is high enough to achieve a threshold efficacy and at depth \(Z_C \).

We note that the above discussed depths are all inverse proportional to \(A \), but the exact relationship requires numerical calculation of \(T(z,t) \), and they are also function of the light intensity and irradiation time (or light dose) having a nonlinear power. For example, the irradiation time must be sufficiently short to prevent overheating of anterior and posterior layers and localize the temperature rise within the corneal stroma (or \(T_1 < T < T_2 \) for \(z<Z_D \)), but long enough to achieve the conversion threshold depth \(Z_C \) for a given optimal \(A \). More details of \(Z_C \) will be discussed later.

3.3 Scleral Softening Efficacy

As reported that the accommodation gain (AG) after the scleral softening is due to the increase of the space between the ciliary body and lens (SCL) and mobility of the posterior vitreal zonules (PVZ) [16,17]. For example, the PVZ length was reduced from 4.6 mm for a nonaccommodative state to 3.6 mm (and 4.45 mm) in an accommodation state for a non-presbyopia (and presbyopia) eye, in which the SCL is about 0.68 mm and 0.35 mm for non-presbyopia and presbyopia eye, respectively. We expect that the AG is proportional to the scleral softening volume efficacy (Seff) which leads to the increase of PVZ mobility and SCL. However, the actual relation of Seff and the amount of PVZ and SCL changes require measured data.

To calculate the volume efficacy, one requires the temperature spatial (Fig. 5) and temporal (Fig. 6) profiles and the related temperatures \(T_1 \), \(T_2 \), and \(T_3 \); and the depths of \(Z_1 \), \(Z_C \) and \(Z_D \). The volume efficacy is given by the double integral of \(k(z,t) \), for time integral of \(t_{11} \) to \(t_{2} \) (shown by Fig. 6) and the spatial integral of \(z = Z_1 \) to \(Z_C \) (as shown by Fig. 5). As defined earlier (referred to Fig. 5) that the conversion depth \(Z_C \) is defined by threshold conversion temperature \(T_2 \) such that the rate constant, \(k(t,z=Z_C) \) is high enough to achieve a threshold efficacy and at depth \(Z_C \). Numerical integration of \(k(z,t) \) is needed, even when the analytic solution of \(T(z,t) \) is given, and it will be presented elsewhere. However, Fig. 5 and Fig. 6 provide us comprehensive features s follows:

(i) For efficient conversion (with \(\text{Ceff} > 0.6 \)), as shown by Fig. 5, large \(A \) (Curve-A) leads to a small \(Z_D \) has a better protection of the posterior layer (at about 500 \(\mu \)m) than that of small \(A \), but it also leads to a smaller volume \(\text{Ceff} \). Therefore optimal \(A \) is required for deep \(z=Z_C \), with \(T \) (at \(z=Z_C \)) \(> T_2 \), for maximum \(\text{Ceff} \), but small \(z<Z_D \) with \(T \) (at \(z=Z_D \)) \(< T_1 \) to avoid posterior damage. We should note that the effective depths can be fine tuned by irradiation time and/or light intensity for a given absorption coefficient.

(ii) As shown by Fig. 6, for efficient conversion, large \(A \), shown by Curve-A, is needed
such that \((t_2-t_1)\) is maximum for maximum volume \(C_{eff}\), which is proportional to the time integral of \(k(z,t)\) over \(t_1\) to \(t_2\). The \(C_{eff}(z,t)\) also increasing function of the light irradiation time, which should be long enough (for large \(t_2\) and \(T>T_2\)), but short enough (with \(T<T_1\) at \(z=Z_D\)) to avoid the posterior damage. For example, if a conversion scleral stroma depth of 500 um is desired, parameters of \(A\) about 20 to 35 cm\(^{-1}\), \(t\) about 100 to 600 ms, for a spot diameter of about 0.2 to 0.6 mm (or intensity is about 100 to 300 W/cm\(^2\)), and laser dose about 100 to 150 mJ/cm\(^2\) are required. In comparison, for the case of CPV with shallow corneal depth (about 150 µm), parameters of \(A\) about 80 cm\(^{-1}\), \(t\) about 250 ms, and \(I_0\) about 200 W/cm\(^2\) are required. These theoretically predicted, proposed parameters, however, need further confirmation by clinical data.

We should note that the effective depths can be fine tuned by irradiation time and/or light intensity for a given absorption coefficient, as shown by our numerical data of Figs. 2 to 4.

3.4 Surface Damage and Cooling

Besides the use of pulse mode to reduce the scleral surface temperature and avoid the surface damage, a pulsed-train technique was also proposed by Lin for increased volume temperature without over heating the tissue surface [21].

The heat sink cooling process may be passive such as the use of dynamic cooling performed pre-laser and/or intra-laser irradiation [21].

Fig. 5. Calculated temperature spatial profiles (at irradiation time \(t=500\) ms) for various \(A=(30,60,90)\) cm\(^{-1}\); for Curve-C, -B, -A; and a fixed \(I_0=100\) W/cm\(^2\).

Fig. 6. Calculated surface temperature (at \(z=0\)) profiles for various \(A=(30,60,90)\) cm\(^{-1}\) for Curve-C, -B, -A, and a fixed \(I_0=200\) W/cm\(^2\); where \(T_2\) \((t_1)\) and \(T_3\) \((t_2)\) define the temperature range of efficient scleral softening.
Sapphire or other material(s) may be used for this heat sink application in the transparent window. Based on the thermal properties of sapphire and cornea, we found that during light irradiation of the cornea (about 500 ms), the "thermal depth" could be approximately 80 µm for the cornea and approximately 760 µm for sapphire. Since thermal diffusion is more rapid in sapphire compared to the cornea, heat transfer is "rate-limited" by thermal diffusion through the cornea.

When a sapphire window (at room temperature T_0=approximately 20° C) contacts the cornea (at physiological temperature T_p=approximately 35° C., although this varies as a function of age, room temperature, and so on), heat flows from the warmer cornea into the cooler heat sink. This heat transfer case is similar to the case of a semi-infinite solid (the cornea and the rest of the body behind it) bounded at its anterior surface ($z=0$, the tear film/anterior epithelium) by a heat sink kept at a fixed temperature T_0. As shown by Fig. 4, the temperature rise spatial profiles (at a given light irradiation time about 500 ms) having a lower temperature near the surface (for $z<Z_1$), and a peak value at $z=Z_C$; for bare sclera and for sclera in contact with a sapphire window.

For light wavelength in the range of 1.89 to 1.96 µm (with A is about 80 to 120 cm$^{-1}$), the posterior layer can be protected when temperature reaches about 70 °C, where the light penetration is limited to about 150 µm depth and it is desired for applications require a shallower penetration such as corneal heating for CPV procedure [18,19]. However, for applications require deeper penetration of 400 to 600 µm (such as sclera softening), light wavelength with a smaller absorption coefficient (with A <30 cm$^{-1}$), is desired, such as in the range of 1.45 to 1.50 µm or 2.05 to 2.15 µm, which however has less posterior protection. We should note that the effective depths can be fine tuned by irradiation time and/or light intensity for a given absorption coefficient.

4. CLINICAL ASPECTS AND ANALYSIS

We will now analyze the clinical aspect based on our mathematical model and the numerical analysis of temperature rise and various effective depths described in Section 3.2: the tissue damage depth (Z_D), temperature penetration depth (Z_I), and conversion depth (Z_C). These depths are governed by the parameters of light intensity and light dose (or irradiation time), and the related threshold values, besides the absorption coefficient (A).

As discussed earlier the scleral softening efficacy, Seff, is given by the solution of Eq. (4) or the time integral of a rate coefficient, $k(z,t)$, which is related to the temperature by an Arrhenius formula. Seff, in general, is both time (t) and depth (z) dependent due the light intensity penetration depth in the tissues which is inverse proportional to the tissue absorption coefficient. Our modeling system having numerical data shown by Figs. 1 to 6, provide quantitative guidance and/or predictions for the following clinical aspects:

The safety and efficacy issues of scleral softening for the treatment of presbyopia are summarized as follows:

(i) laser parameters (intensity, dose, spot size, wavelength);
(ii) scleral response: the tissue damage depth (Z_D), temperature penetration depth (Z_I);
(iii) the efficacy: depends on the temperature rise, the conversion depth (Z_C) and the time integral of a rate coefficient, $k(z,t)$;
(iv) clinical protocol (laser irradiation time, treatment area and spot size)
(v) mechanisms of action for accommodation gain, which also define the rate coefficient, $k(z,t)$;
(vi) long-term effects, including evolution of accommodation gain.

Comparing to the existing method using scleral ablation (using Er:YAG laser), US patented in 2002 by Lin [8], the present new method (US patent pending) using diode laser scleral tissue softening, offers the "predicted" advantages of: non-ablative, no bleeding, less pains, less redness and a much faster procedure (one minute vs 10 minutes in Er:YAG). However, these "predicted" advantages are based on the basic science [16,17], pig's eye model and the proposed protocol of the present article which, however, requires further clinical studies.

4.1 Safety and Efficacy

For safety, the scleral treatment should not produce serious adverse events (SAEs) or complications, including discomfort, SAEs include scleral perforation, scleral scarring and persistent scleral epithelial defect. The safety issue is discussed by the tissue damage depth (Z_D) which is further defined by a threshold.
damage temperature (T1); and a large A (Curve-A) leads to a small \(Z_D \) has a better protection of the posterior but it damages the anterior layer (about 70 \(\mu \)m). To overcome the surface layer damage under a laser having a large A (about 60 to 90 cm\(^{-1}\)), a sapphire window (at about 20°C) was used as a heat sink to protect the sclera surface (having an initial physiological temperature about 35°C), such that the tear film/anterior epithelium by a heat sink kept at a fixed temperature \(T_0 \), having a lower temperature near the surface (for \(z<Z_1 \)), and a peak value at \(z=Z_0 \), as demonstrated by Fig. 5. We should note that the effective depths can be fine tuned by irradiation time and/or light intensity for a given absorption coefficient, as shown by our numerical data of Figs. 1 to 4.

For efficacy, the treatment should produce maximum vision improvement as rapidly as possible after treatment and the accommodation gain should have a long duration of effect (at least few years). The short term efficacy is given by \(\text{Seff} (z,t) = 1 - M(z,t)/M_0 \), and \(M(z,t) \) is given by the solution of the rate eq. (4). The "volume" efficacy is proportional to the heated effective zone volume (or area x depth). Therefore, maximum conversion depth (about 400 to 600 \(\mu \)m) is desired, but within the safety depth of the the underneath ciliary body.

4.2 Proposed IRB Study Criteria

In our planned IRB studies for presbyopia correction, we propose the following criteria (referred to the IRB studies of presbyopia, public information from US FDA website, ClinicalTrials.gov):

Eligibility Criteria:
Ages Eligible for Study: 40 year or older (male or female)

Inclusion Criteria:
1. Willing and able to understand and sign an informed consent;
2. Willing and able to attend postoperative examinations per protocol schedule;
3. 40 years of age or greater, of either gender or any race;
4. Less than (<) 1.00D of astigmatism in each eye, measured in their manifest refraction;
5. Mean refractive spherical equivalent refraction (MRSE) of +/- 0.50D for distance vision; Note: Subjects who meet this criterion as a result of prior laser refractive surgery (LASIK, LASEK or PRK) may qualify; however, the subject must have had the LVC procedure performed at least 12 months prior to the procedure and be stable.
6. Uncorrected distance visual acuity (UDVA) is better than or equal to 20/40 (logMAR 0.30) in each eye, and a Corrected Distance Visual Acuity (CDVA) is better than or equal to 20/32 (logMAR 0.20) in each eye;
7. Demonstrate Stereopsis of 200 seconds of arc or better using a Randot stereoscopic fly test and reading correction;
8. In good ocular health with the exception of presbyopia;
9. Presbyopia as demonstrated by:
 a. Currently wearing reading glasses and/or bifocals with an ADD of +1.50D or more; and
 b. Reduced near visual acuity when corrected for distance (DCNVA of 20/50 (logMAR 0.40) or worse; and
 c. Amplitude of accommodation (AA) of 1.50D or less as measured by the minus lens test; OR
 d. Amplitude of accommodation (AA) of 1.50D or less as measured by the iTrace aberrometer.
10. Intraocular pressure (IOP) >11mmHg and < 30 mmHg in each eye without IOP-lowering medication;
11. Less than or equal to (\(\leq \)) 0.50D difference between the manifest refraction and the cycloplegic refraction;
12. Stable distance refraction is present, defined as \(\leq 0.50D \) variation of refraction in the 12 months prior to the laser procedure. Manifest refraction cannot vary more than 0.50D from current spectacles that are at least 12 months of age, or from a documented refraction at least 12 months prior to the preoperative baseline exam;
13. Completed a washout period of two weeks (14 days) prior to laser procedure from prior treatment with:
 o NSAIDS, blood thinners, aspirin, and other substances which may increase bleeding;
 o Any anti-oxidant supplements (e.g., Vitamin B6, Vitamin B12, Vitamin E, Vitamin C, Acai, Ocuvite, etc);
 o Anti-oxidant food supplements, such as
shitake mushroom, mushroom extract and oral anti-oxidants.

Exclusion Criteria:

1. Self-reported current pregnancy or breastfeeding, or plans to become pregnant during the entire study period;
2. History of ocular trauma or prior ocular surgery, or expected to require retinal laser treatment or other ocular surgical intervention;
3. Presence of ocular pathology other than cataract such as:
 - Amblyopia or strabismus
 - Corneal abnormalities or disease
 - Dry Eye (International Task Force Level 3 or greater)
 - Pupil abnormalities (e.g., corectopia, Adie’s)
 - Capsule or zonular abnormalities
 - Intraocular inflammation
 - Retinal disease or pathology
 - Glaucoma (any type)
 - History of prior ocular surgery other than keratorefractive surgery;
4. Known pathology that may affect visual acuity and/or are predicted to cause future acuity losses to a level of 20/30 (logMAR 0.18) or worse (e.g., macular degeneration);
5. Previous radial keratotomy or other corneal surgery (e.g., corneal transplant, DSAEK/DSEK, lamellar keratoplasty), except for LASIK, EpiLASIK/LASEK, or PRK;
6. Previous anterior or posterior chamber surgery (e.g., vitrectomy, laser iridotomy);
7. Keratoconus or keratoconus suspect with CDVA of less than (<) 20/20 (< logMAR 0.00) at distance;
8. Near visual acuity at 40cm equivalent to their distance vision with distance correction (i.e., no evident effect of reduced accommodative range);
9. Use of systemic or ocular medications that may affect vision (the use of any miotic or cycloplegic agent is specifically contraindicated);
10. Acute or chronic disease or illness that could increase the operative risk or confound the study outcome(s) (e.g., diabetes mellitus, immunocompromised, connective tissue disease);
11. Uncontrolled systemic or ocular disease;
12. Any abnormality preventing reliable applanation tonometry in EITHER eye;
13. Undilatable pupil such that one cannot examine the periphery of the retina;
14. Functional eye preference, defined as phoria measuring over 15dp horizontally and/or over 2dp vertically, any strabismus, or suppression;
15. History of scleral ectasia, scleritis, or episcleritis; or thin sclera < 400 microns, as determined by taking the average of three measurements with ultrasound biomicroscopy (UBM) pachymetry;
16. History of nuclear sclerosis LOCS III grade 2 or worse and/or other cataracts reducing CDVA;
17. Known allergies to study medications including topical steroids, antibiotics and NSAIDS;
18. Per Principle Investigator (PI) discretion.

4.3 Proposed Protocol

Clinical observations are required to determine the maximum laser dose (intensity x irradiation time) that retains an undamaged scleral surface layer. Our current softening treatments use a diode laser at a wavelength of about 1.47 µm or about 1.86 µm, or about 2.15 µm, such that absorption coefficient (A) is about 20 to 35 cm⁻¹; or about 1.88 to 1.9 µm, or about 1.98 to 2.05 µm, (with A about 60 to 100 cm⁻¹); where an1-to-4 fiber splitter with fiber core of 200 to 600 µm, and the sapphire window with one mm thickness were used. The laser dose is calculated to be about 100 to 250 J/cm²/spot, for a laser power of 0.2 to 0.8 W with spot diameter of 0.2 to 0.6 mm (or intensity is about 100 to 300 W/cm²), and irradiation time of 100-600 ms. We note that the damage threshold is defined by the dose, or energy per unit area (and depends on the spot size), rather than the energy or power (which is independent to the spot size). We should note that the effective depths can be fine tuned by irradiation time and/or light intensity for a given absorption coefficient. For sufficient “volume” efficacy, we require maximum conversion depth (about 400 to 600 um) of the scleral stroma, but within the safety depth of the underneath ciliary body.

We also propose a total of 4 to 16 laser spots with 1 to 4 spots for each quarter portion of the eye, as shown by Fig. 7, where the treated areas are defined by area between two circles having a diameters of about 12 mm (inner circle) and 18 mm (outer circle), and the treated patterns could be dots, lines, curves etc. The softened portion...
can include four softened portions of four locations away from muscles of the eye including inferior muscles, superior muscles, nasal muscles, and temporal muscles in order to inhibit damage to the muscles. The heat sink or cooling air or window is required to inhibit damage to the conjunctiva of the eye [18].

The use of fiber splitters (1 to 2, or 1 to 4) could speed up the procedure. We note that all the treated areas (except Fig. 7.D) are outside the limbus of the eye such that the cornea shape remain intact leading to unchanged of far and near vision, except the increase of accommodation. This is a distinct difference between the scleral and corneal heating. We further note that hyperopia correction can be simultaneously treated with the presbyopia using a smaller inner circle of about 6 to 8 mm, which causes a corneal reshaping due to laser thermal shrinkage (see Fig. 7.D). This dual function effects will be demonstrated by our pig's eye topography in section 4.4. We note that above proposed protocol and dual function method are under pending of US Provisional Application (dated June 30, 2022, submitted by the present author, JT Lin).

![Fig. 7. The treated sclera/cornea locations and patterns for presbyopia corrections (Figs. A, B and C), and for hyperopia-and-presbyopia dual function treatment (Fig. D)](image)

4.4 Topography Changes of Pig Eyes

To demonstrate some of our predicted clinical outcomes, topography changes of flash cadaver pig eyes are shown as follows.

Handheld corneal topography (model name Vista, made by EyeSys, USA) was used for pig's eye. Untreated topography was taken as reference, Fig. 8 shows the laser 4 spots treatment at location about 5 mm diameter of a pig eye. The laser parameters are: diode laser (model IR-1500, made by New Photon Corp, Taiwan), with wavelength of 1.47 µm, power about 0.5 W (each spot), spot size about 200 µm, output from a fiber having a core diameter of 400 µm, connected to the system, having 1x4 beam splitter), and irradiation time of 0.2 second for each spot. Each topographies were taken 3 times to assure the consistent data, which also require pig's eye surface was fully watered for good imaging.

Fig. 9, compares the topography for: (A) untreated eye, and (B) treated 4 spots at location about 5 mm diameter, in which Fig. 9 (B) leading to corneal shrinkage (reshaping).

As shown in Fig. 10 are: (A) for untreated, (B) for treated 4 spots at location about 5 mm diameter; and (C) for dual treatments of: (i) on corneal (diameter about 5 mm) leading to corneal reshaping; and (ii) additional scleral treatment (diameter about 15 mm), which shows no impact on the corneal shapes, as demonstrated by the same topography of (B) and (C).
Fig. 8 The laser treatment (4 spots) at location about 5 mm diameter on a pig eye

Fig. 9. Corneal topography for: (A) untreated eye, and (B) the treated 4 spots at location about 5 mm diameter, leading to corneal shrinkage (reshaping)

Fig. 10. Topography for: (A) untreated, (B) treated 4 spots; and (C) for dual treatments of corneal reshaping and scleral heating.

5. CONCLUSION

The safety and efficacy of scleral softening treatment depend upon: laser parameters (intensity, spot size, wavelength), the tissue damage depth \((Z_D)\), temperature penetration depth \((Z_T)\), the conversion depth \((Z_C)\), and the time \((t)\) and depth \((z)\) integral of a rate coefficient, \(k(z,t)\), given by an Arrhenius formula. The suggested protocol for our current scleral softening treatments include: a diode laser at a wavelength of about 1.45 to 2.1 µm, (with A about 20 to 100 cm\(^{-1}\)), laser power of 0.2 to 0.8 W, and irradiation time of 100 to 600 ms. The GA is proportional to the softening efficacy \((Seff)\) of the scleral tissue after a thermal laser leading to the increase of PVZ mobility and SCL. However, the actual relation of \(Seff\) and the PVZ and SCL changes require measured data.

By choosing the laser treated areas, a dual function treatment using scleral softening or presbyopia and using cornea stroma shrinkage for hyperopia is proposed. Corneal thermal shrinkage is demonstrated by the topography changes of pig eyes, in which the scleral softening does not affect the corneal shapes.

CONSENT

It is not applicable.

ETHICAL APPROVAL

Only cadaver pig eyes were used in the studies. Therefore, no ethical issues are involved.
COMPETING INTERESTS
The author is the CEO and major shareholder of New Photon Corp., and Medical Photon Inc.

REFERENCES
DOI: 10.9734/OR/2021/v14i430199.

© 2022 Lin; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/88320

36