Comparison of Central Corneal Thickness Measurements between Angiovue Optical Coherence Tomography, Ultrasound Pachymetry and Ocular Biometry

Main Article Content

E. Pateras
A. I. Kouroupaki

Abstract

Purpose: To compare central corneal thickness (CCT) measurements and their reproducibility when taken by Ultrasound Pachymetry, Ocular Biometry and Angiovue Optical Coherence Tomography (OCT).

Methods: Twenty-five healthy volunteers were recruited creating a sample size of 50 eyes. All subjects had pachymetric measurements by Ultrasound pachymetry (PachPen Handheld Pachymeter, Keeler Instruments Inc), Ocular biometry (IOL Master 700 Swept Source Biometry, Zeiss) and Angiovue Optical Coherence Tomography (Optovue Avanti RTVue XR Angiovue). The measurements of central corneal thickness for the three devices were taken by the same examiner twice for more accuracy.

Results: The average measurements of central corneal thickness by Ultrasound pachymetry (PachPen Handheld Pachymeter, Keeler Instruments Inc), Ocular biometry (IOL Master 700 Swept Source Biometry, Zeiss) and Angiovue Optical Coherence Tomography (Optovue Avanti RTVue XR Angiovue) were 547.26 μm, 551.36 μm, and 536.42 μm, respectively. The mean standard deviation (SD) of repeated measurements by Ocular biometry was 48.87 μm, which was greater than the mean SD of 44.24 μm and 40.35 μm (P < 0.001) by ultrasound pachymetry and Angiovue optical coherence tomography, respectively. There were statistically significant differences in the measurement results among the 3 methods (Ultrasound pachymetry vs. Ocular biometry P = 0.019; Ultrasound pachymetry vs. Angiovue Optical Coherence Tomography; P < 0.001; Ocular biometry vs. Angiovue Optical Coherence Tomography P < 0.001). There was a significant linear correlation between the Ultrasound pachymetry and Ocular biometry (r = 0.945, P<0.001), Ultrasound pachymetry and Angiovue Optical Coherence Tomography (r = 0.895, P<0.001), and Ocular biometry and Angiovue Optical Coherence Tomography (r = 0.902, P<0.001).

Conclusion: Central corneal thickness readings were comparable between PachPen Handheld Pachymeter, IOL Master 700 Biometry and Angiovue Optical Coherence Tomography; Angiovue optical coherence tomography gave significantly smaller values. The measurements of the 3 methods showed significant linear correlations with one another. All methods provided acceptable repeatability of measurements.

Keywords:
Tomography, ocular biometry, Central Corneal Thickness (CCT), pachymetry.

Article Details

How to Cite
Pateras, E., & Kouroupaki, A. I. (2020). Comparison of Central Corneal Thickness Measurements between Angiovue Optical Coherence Tomography, Ultrasound Pachymetry and Ocular Biometry. Ophthalmology Research: An International Journal, 13(4), 1-9. https://doi.org/10.9734/or/2020/v13i430172
Section
Original Research Article

References

Copt RP, Thomas R, Mermoud A. Corneal thickness in ocular hypertension, primary open-angle glaucoma, and normal tension glaucoma. Arch. Ophthalmol. 1999;117: 14–16.

Ertugrul Can, Hilal Eser‐Ozturk, Mustafa Duran, Tugba Cetinkaya, Nursen Arıturk. Comparison of central corneal thickness measurements using different imaging devices and ultrasound pachymetry. Indian J Ophthalmol. 2019;67(4):496-499.
DOI: 10.4103/ijo.IJO_960_18
PMID: 3090058

Thomas Desmond, Patricia Arthur, Kathleen Watt. Comparison of central corneal thickness measurements by ultrasound pachymetry and 2 new devices, Tonoref III and RS-3000. Int. Ophthalmol. 2019;39:917–923.

Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography Science. 1991;254:1178–1181.

Khurana RN, Li Y, Tang M, Lai MM, Huang D. High-speed optical coherence tomography of corneal opacities. Ophthalmology. 2007;114:1278–1285.

Ozyol E, Özyol P. Comparison of central corneal thickness with four noncontact devices: An agreement analysis of swept-source technology. Indian J Ophthalmol. 2017;65(6):461-465.

Pateras E, Kontogeorgou E. Comparative study of corneal thickness before and after femtolasik surgery with pentacam® axl and ultrasound device (Tomey SP-100). Ophthalmology Research: An International Journal. 2020;13(3):20-27.

Pateras E, Koufala Ch. Comparison between orbscan iiz, pentacam, ultrasound pachymetry (tomey sp-100) at different stages of keratoconus. Ophthalmology Research: An International Journal. 2020; 13(2):7-33.

Peyman M, Tai LY, Khaw KW, Ng CM, Win MM, Subrayan V. Accutome PachPen handheld ultrasonic pachymeter: Intraobserver repeatability and inter-observer reproducibility by personnel of different training grades. Int Ophthalmol. 2015;35(5):651-5.

Bullimore MA, Slade S, Yoo P, Otani T. An evaluation of the IOL master 700. Eye Contact Lens. 2019;45(2):117-123.

Tarannum Mansoori, Nagalla Balakrishna. Intrasession repeatability of pachymetry measurements with RTVue XR 100 optical coherence tomography in normal cornea. Saudi J Ophthalmol. 2017;31(2):65–68.

Mohammadreza Peyman, Lai Yong Tai, Keat Ween Khaw, Choung Min Ng, Maung Maung Win, Visvaraja Subrayan. Accutome PachPen handheld ultrasonic pachymeter: intraobserver repeatability and interobserver reproducibility by personnel of different training grades. Int Ophthalmol. 2015;35(5):651-5.

Gunvant P, Broadway DC, Watkins RJ Repeatability and reproducibility of the BVI ultrasonic Pachymeter. Eye (Lond). 2003; 17:825–828.

Miglior S, Albe E, Guareschi M, Mandelli G, Gomarasca S, Orzalesi N. Intraobserver and interobserver repro- ducibility in the evaluation of ultrasonic pachymetry mea- surements of central corneal thickness. Br J Ophthalmol. 2004;88:174–177.

Gordon A, Boggess EA, Molinari JF. Variability of ultrasonic pachometry. Optom Vis Sci. 1990;67:162–165.

Bovelle R, Kaufman SC, Thompson HW, Hamano H. Corneal thickness measurements with the Topcon SP-2000P specular microscope and an ultrasound pachymeter. Arch Ophthalmol. 1999;117: 868–870.

Reader III, SJ. Differences among ultrasonic pachymeters in measuring-corneal thickness. Journal of Refractive Surgery. 1987;3:7-11.

Huan-Ming ZHOU, Yuan-Ling JIA, Hong-Min XIANG, Qing-Song LI, Wen-Jie TIAN, Xiang GAO. Comparison of central corneal thickness measurements by PachPen ultrasonic pachymetry and the other two optical measuring instruments. International Eye Science. 2018;18(4):709-712.

Laszlo Kiraly, Jana Stange, Kathleen S. Kunert, and Saadettin Sel. Repeatability and agreement of central corneal thickness and keratometry measurements between four different devices. Journal of Ophthalmology. 2017;(3):1-8.

Woo Beom Shin, MD et al. Comparison of central corneal thickness measured by swept-source optical coherence tomography and ultrasound pachymetry. J Korean Ophthalmol Soc. 2017;58(3):276-282.

Haitao Li, Christopher Kai Shun Leung, Lee Wong, Carol Yim Lui Cheung, Chi Pui Pang, Robert Neal Weinreb, Dennis Shun Chiu Lam. Comparative study of central corneal thickness measurement with slit-lamp optical coherence tomography and Visante optical coherence tomography. Ophthalmology, 2008;115(5):796-801.e2.
DOI: 10.1016/j.ophtha.2007.07.006

Hanna Y. Kim, Donald. L Budenz, et al. Comparison of central corneal thickness using anterior segment optical coherence tomography vs. ultrasound pachymetry. Am J Ophthalmol. 2008;145(2):228-232.
DOI: 10.1016/j.ajo.2007.09.030

Sang Min Nam, Hyung Keun Lee, Eung Kweon Kim, Kyoung Yul Seo. Comparison of corneal thickness after the instillation of topical anesthetics: Proparacaine versus oxybuprocaine. Cornea. 2006;25(1):51-4.
DOI:10.1097/01.ico.0000179929.97651.59

Herse P, SA. Short-term effects of proparacaine on human corneal thickness. Acta Ophthalmology. 1992;70: 740-4.

Andrew K C Lam, Davie Chen. Effect of proparacaine on central corneal thickness values: an evaluation using noncontact specular microscopy and pentacam. Cornea. 2007;26(1):55-8.
DOI:10.1097/01.ico.0000240082.08416.22

Doughty MJ, ZM. Human corneal thickness and its impact on intraocular pressure measures: A review and meta-analysis approach. Surv Ophthalmol. 2000;44(5): 367-408.
DOI: 10.1016/s0039-6257(00)00110-7

Christoph Kniestedt, Shan Lin, Joyce Choe, Alan Bostrom, Michelle Nee, Robert L Stamper. Clinical comparison of contour and applanation tonometry and their relationship to pachymetry. Arch Ophthalmol. 2005;123(11):1532-7.
DOI: 10.1001/archopht.123.11.1532

Böhm, A, Kohlhaas M, Lerche R. et al. The effects of changed biomechanical parameters on measurements of intraocular pressure in keratoconus patient. Ophthalmologe. 1997;94:771–774.
Available:https://doi.org/10.1007/s003470050201

Goldmann H, Schmidt T. Uber applanations-tonometrie. Ophthalmologia. 1957;134:221-242.

Tonnu PA et al. The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the Tonopen XL and Goldmann applanation tonometry. Br J Ophthalmol. 2005;89(7):851-4.
DOI: 10.1136/bjo.2004.056622

Gordon Mae et al., The ocular hypertension treatment study. baseline factors that predict the onset of primary open angle glaucoma. Arch Ophthalmol. 2002;120(6):714-20; Discussion 829-30. DOI: 10.1001/archopht.120.6.714

European Glaucoma Prevention Study (EGPS) Group; Stefano Miglior, Norbert Pfeiffer, Valter Torri, Thierry Zeyen, Jose Cunha-Vaz, Ingrid Adamsons. Predictive factors for open angle glaucoma among patients with ocular hypertension in the European glaucoma prevention study

Ophthalmology. 2007;114(1):3-9.
DOI: 10.1016/j.ophtha.2006.05.075