Opportunities to Topically Reduce Intraocular Pressure in Glaucoma

Main Article Content

Ognjenka Rahić
Amina Tucak
Merima Sirbubalo
Lamija Hindija
Jasmina Hadžiabdić
Edina Vranić

Abstract

Since glaucoma is a serious health problem, numerous therapeutics are being developed to reduce Intraocular Pressure (IOP) as the only modifiable factor of all glaucoma symptoms. IOP-lowering agents are divided into six groups, each of which has a specific mechanism of action and side effects, which are the focus of this article and are explained in detail. All the mentioned agents are formulated as eye drops. However, as conventional topical eye drops have significant disadvantages, of which poor bioavailability and patient noncompliance are the main, novel approaches to designing their drug delivery systems were used and briefly presented in this review.

Keywords:
Glaucoma, glaucoma treatment, intraocular pressure, novel drug delivery systems

Article Details

How to Cite
Rahić, O., Tucak, A., Sirbubalo, M., Hindija, L., Hadžiabdić, J., & Vranić, E. (2021). Opportunities to Topically Reduce Intraocular Pressure in Glaucoma. Ophthalmology Research: An International Journal, 14(2), 17-33. https://doi.org/10.9734/or/2021/v14i230189
Section
Review Article

References

Bourne RRA, Stevens GA, White RA, Smith JL, Flaxman SR, Price H, et al. Causes of vision loss worldwide, 1990-2010: A systematic analysis. Lancet Glob Heal. 2013;1:339–49.

Stevens GA, White RA, Flaxman SR, Price H, Jonas JB, Keeffe J, et al. Global prevalence of vision impairment and blindness: Magnitude and temporal trends, 1990-2010. Ophthalmology. 2013;120: 2377–84.

Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology. 2014; 121:2081–90.

Rahić O, Tucak A, Omerović N, Sirbubalo M, Hindija L, Hadžiabdić J, et al. Novel drug delivery systems fighting glaucoma: Formulation obstacles and solutions. Pharmaceutics. 2021;13:1–58.

Burgoyne CF. Optic nerve: The glauco matous optic nerve. In: Giaconi JA, Law SK, Coleman AL, Caprioli J, editors. Pearls of Glaucoma Management. Berlin: Springer-Verlag; 2010;1–13.

Yadav KS, Rajpurohit R, Sharma S. Glaucoma: Current treatment and impact of advanced drug delivery systems. Life Sci. 2019;221:362–76.

Braunger BM, Fuchshofer R, Tamm ER. The aqueous humor outflow pathways in glaucoma: A unifying concept of disease mechanisms and causative treatment. Eur J Pharm Biopharm. 2015;95:173–81.

Anderson DR. IOP: The importance of intraocular pressure. In: Giaconi JA, Law SK, Coleman AL, Caprioli J, editors. Pearls of Glaucoma Management: Second Edition. Berlin: Springer-Verlag. 2016;85–90.

Clement CI, Franzco HM, Bhartiya S, Shaarawy T. New Perspectives on Target Intraocular Pressure. Surv Ophthalmol. 2014;59:615–26.

Ventura WP, Freund M. Evidence for a new class of uterine stimulants in rat semen and male accessory gland secretions. J Reprod Fertil. 1973;33:507–11.

Camras CB, Bito LZ, Eakins KE. Reduction of intraocular pressure by prostaglandins applied topically to the eyes of conscious rabbits. Investig Ophthalmol Vis Sci. 1977;16:1125–34.

Shaarawy TM, Sherwood MB, Hitchings RA, Crowston JG. Glaucoma. Medical Diagnosis & Therapy. 2nd ed. Amsterdam: Sounders Elsevier; 2009.

Netland PA. Glaucoma medical therapy. principles and management. 2nd ed. Oxford: Oxford University Press; 2008.

Alexander CL, Miller SJ, Abel SR. Prostaglandin analog treatment of glaucoma and ocular hypertension. Ann Pharmacother. 2002;36:504–11.

Fung DS, Whitson JT. An evidence-based review of unoprostone isopropyl ophthalmic solution 0.15% for glaucoma: Place in therapy. Clin Ophthalmol. 2014;8: 543–54.

Camras CB, Toris CB, Sjoquist B, Milleson M, Thorngren JO, Hejkal TW, et al. Detection of the free acid of bimatoprost in Aqueous Humor Samples from human eyes treated with bimatoprost before. Ophthalmology. 2004;111:2193–8.

Crowston JG, Lindsey JD, Morris CA, Wheeler L, Medeiros FA, Weinreb RN. Effect of bimatoprost on intraocular pressure in prostaglandin FP receptor knockout Mice. Investig Ophthalmol Vis Sci. 2005;46:4571–7.

Ota T, Aihara M, Saeki T, Narumiya S, Araie M. The Effects of Prostaglandin Analogues on Prostanoid EP1, EP2, and EP3 Receptor-Deficient Mice. Investig Opthalmology Vis Sci. 2006;47:3395–9.

Toris CB, Camras CB, Yablonski ME, Brubaker RF. Effects of exogenous prostaglandins on aqueous humor dynamics and blood- aqueous barrier function. Surv Ophthalmol. 1997;41:69–75.

Weinreb RN, Toris CB, Gabelt BT, Lindsey JD, Kaufman PL. Effects of prostaglandins on the aqueous humor outflow pathways. Surv Ophthalmol. 2002;47:53–64.

Toris CB, Alm A, Camras CB. Latanoprost and cholinergic agonists in combination. Surv Ophthalmol. 2002;47:141–147.

Christiansen GA, Nau CB, Mclaren JW, Johnson DH. Mechanism of ocular hypotensive action of bimatoprost (Lumigan) in patients with ocular hypertension or glaucoma. Ophthalmology. 2004;111:1658–62.

Dinslage S, Hueber A, Diestelhorst M, Krieglstein GK. The influence of Latanoprost 0.005% on aqueous humor flow and outflow facility in glaucoma patients: A double-masked placebo-controlled clinical study. Graefe’s Arch Clin Exp Ophthalmol. 2004;242:654–60.

Toris CB, Zhan G, Camras CB. Increase in Outflow Facility With Unoprostone Treatment in Ocular Hypertensive Patients. Arch Ophthalmol. 2004;122:1782–7.

Toris CB, Zhan G, Camras CB, Mclaughlin MA. Effects of travoprost on aqueous humor dynamics in Monkeys. J Glaucoma. 2005;14:70–3.

Weinreb RN, Lindsey JD. Metalloproteinase gene transcription in human ciliary muscle cells with latanoprost. Investig Ophthalmol Vis Sci. 2002;43:716–22.

Sharif NA, Kelly CR, Crider JY. Agonist activity of bimatoprost, travoprost, latanoprost, unoprostone isopropyl ester and other prostaglandin analogs at the cloned human ciliary body FP prostaglandin receptor. J Ocul Pharmacol Ther. 2002;18:313–24.

Toris CB, Zhan G, Fan S, Dickerson JE, Landry TA, Bergamini MVW, et al. Effects of Travoprost on Aqueous Humor Dynamics in Patients With Elevated Intraocular Pressure. J Glaucoma. 2007; 16:189–95.

Toris CB, Gabelt BT, Kaufman PL. Update on the Mechanism of Action of Topical Prostaglandins for Intraocular Pressure Reduction. Surv Ophthalmol. 2008;53: 107–120.

Quaranta L, Riva I, Katsanos A, Floriani I, Centofanti M, Konstas AGP. Safety and efficacy of travoprost solution for the treatment of elevated intraocular pressure. Clin Ophthalmol. 2015;9:633–43.

Sharif NA, Kelly CR, Crider JY. Human trabecular meshwork cell responses induced by bimatoprost, travoprost, unoprostone, and other FP prostaglandin receptor agonist analogues. Investig Ophthalmol Vis Sci. 2003;44:715–21.

Stamper RL, Lieberman MF, Drake MV. Prostaglandins. In: Becker-Shaffer’s diagnosis and therapy of the glaucomas: Eighth edition. Amsterdam: Elsevier Inc. 2009;359–75.

Toris C. Glaucoma. in: Reference module in biomedical sciences. Elsevier. 2014;1–7.

Lindén C, Alm A. The effect on intraocular pressure of latanoprost once or four times daily. Br J Ophthalmol. 2001;85:1163–6.

Brandt JD, Van Denburgh AM, Chen K, Whitcup SM. Comparison of once- or twice-daily bimatoprost with twice-daily timolol in patients with elevated IOP: A 3-month clinical trial. Ophthalmology. 2001;108:1023–31.

Sherwood M, Brandt J. Six-month comparison of bimatoprost once-daily and twice-daily with timolol twice-daily in patients with elevated intraocular pressure. Surv Ophthalmol. 2001;45:361– 368.

Herndon LW, Asrani SG, Williams GH, Challa P, Lee PP. Paradoxical intraocular pressure elevation after combined therapy with latanoprost and bimatoprost. Arch Ophthalmol. 2002;120:847–9.

Jonas JB, Aung T, Bourne RR, Bron AM, Ritch R, Panda-Jonas S. Glaucoma. Lancet. 2017;390:2183–93.

Hedner J, Everts B, Ström Möller C. Latanoprost and respiratory function in asthmatic patients: Randomized, double-masked, placebo-controlled crossover evaluation. Arch Ophthalmol. 1999;117:1305–9.

FDA. Drug Trials Snapshots: Vyzulta; 2017.
Accessed: 25 January 2021.
Available: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-vyzulta.

Weinreb RN, Ong T, Sforzolini BS, Vittitow JL, Singh K, Kaufman PL, et al. A randomised, controlled comparison of latanoprostene bunod and latanoprost 0.005% in the treatment of ocular hypertension and open angle glaucoma: The VOYAGER study. Br J Ophthalmol. 2015;99:738–45.

Phillips CI, Howitt G, Rowlands DJ. Propranolol as ocular hypotensive agent. Br J Ophthalmol. 1967;51:222–6.

Hopkins G, Pearson R. Ophthalmic Drugs: Diagnostic and therapeutic uses. 5th ed. Amsterdam: Elsevier; 2007.

Orme M, Collins S, Dakin H, Kelly S, Loftus J. Mixed treatment comparison and meta-regression of the efficacy and safety of prostaglandin analogues and comparators for primary open-angle glaucoma and ocular hypertension. Curr Med Res Opin. 2010;26:511–28.

Barnes J, Moshirfar M. Timolol. StatPearls; 2020.
Accessed: 1 February 2021.
Available:https://www.ncbi.nlm.nih.gov/books/NBK545176/.

Woodward DF, Dowling MC, Feldmann BJ, Chen J. Topical timolol, at conventional, unilateral doses causes bilateral ocular β-blockade in rabbits. Exp Eye Res. 1987;44:319–29.

Toris CB, Tafoya ME, Camras CB, Yablonski ME. Effects of apraclonidine on aqueous humor dynamics in human eyes. Ophthalmology. 1995;102:456–61.

Toris CB, Gleason ML, Camras CB, Yablonski ME. Effects of brimonidine on aqueous humor dynamics in human eyes. Arch Ophthalmol. 1995;113:1514–7.

Kodjikian L, Durand B, Burillon C, Rouberol F, Grange JD, Renaudier P. Acetazolamide-induced thrombocytopenia. Arch Ophthalmol. 2004;122:1543–4.

Fraunfelder FT, Bagby GC. Monitoring patients taking oral carbonic anhydrase inhibitors. Am J Ophthalmol. 2000;130:221–3.

FDA. Drug Trials Snapshots: RHOPRESSA; 2020.
Accessed: 25 January 2021.
Available:https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-rhopressa.

Ren R, Li G, Le TD, Kopczynski C, Stamer WD, Gong H. Netarsudil Increases Outflow Facility in Human Eyes Through Multiple Mechanisms. Investig Ophthalmol Vis Sci. 2016;57:6197–209.

Dhanapal R, Ratna VJ. Ocular drug delivery system – a review. Int J Innov Drug Discov. 2012;2:4–15.

Agrawal AK, Das M, Jain S. In situ gel systems as ‘smart’ carriers for sustained ocular drug delivery. Expert Opin Drug Deliv. 2012;9:383–402.

Almeida H, Amaral MH, Lobão P, Lobo JMS. In situ gelling systems: A strategy to improve the bioavailability of ophthalmic pharmaceutical formulations. Drug Discov Today. 2014;19:400–12.

Newman Casey PA, Robin AL, Blachley T, Farris K, Heisler M, Resnicow K, et al. The most common barriers to glaucoma medication adherence: A cross-sectional survey. Ophthalmology. 2015;122:1308–16.

Sasaki H, Yamamura K, Nishida K, Nakamura J, Ichikawa M. Delivery of drugs to the eye by topical application. Prog Retin Eye Res. 1996;15:583–620.

58.Natarajan JV, Darwitan A, Barathi VA, Ang M, Htoon HM, Boey F, et al. Sustained drug release in nanomedicine: A long acting nanocarrier based formulation for glaucoma. ACS Nano. 2014;8:419–29.

Natarajan JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, Venkatraman SS. Nanomedicine for glaucoma: Liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine. 2012;7:123–31.

Rodriguez Aller M, Guinchard S, Guillarme D, Pupier M, Jeannerat D, Rivara Minten E, et al. New prostaglandin analog formulation for glaucoma treatment containing cyclodextrins for improved stability, solubility and ocular tolerance. Eur J Pharm Biopharm. 2015;95:203–14.

Crawford KS, Ellis JY, Rulander J, Johnston S, Lai F, Leahy CD. Sustained Delivery of Prostaglandin from Drug-Containing Depots Using Ocular Rings in Beagles. Invest Ophthalmol Vis Sci. 2013;54:5073.

Yellepeddi VK, Sheshala R, Mc Millan H, Gujral C, Jones D, Raghu Raj Singh T. Punctal plug: A medical device to treat dry eye syndrome and for sustained drug delivery to the eye. Drug Discov Today. 2015;20:884–9.

Capitena Young CE, Kahook MY, Seibold LK. Novel drug delivery systems for the treatment of glaucoma. Curr Ophthalmol Rep. 2019;7:143–9.

Ciolino JB, Stefanescu CF, Ross AE, Salvador Culla B, Cortez P, Ford EM, et al. In vivo performance of a drug-eluting contact lens to treat glaucoma for a month. Biomaterials. 2014;35:432–9.

Polyactiva Pty Ltd. Glaucoma Program; 2021.
Accessed: 5 October 2020.
Available:https://polyactiva.com/products/glaucoma-program/.

Navratil T, Garcia A, Tully J, Maynor B, Ahmed IIK, Budenz DL, et al. Preclinical evaluation of ENV515 (travoprost) intracameral implant - Clinical candidate for treatment of glaucoma targeting six-month duration of action. Invest Ophthalmol Vis Sci. 2014;55:3548.

Schweitzer JA, Ibach M. Sustained-release drug delivery: The future of glaucoma treatment. Glaucoma Today.. 2016;43–45.

Shouchane Blum K, Geffen N, Zahavi A. Sustained drug delivery platforms – A new era for glaucoma treatment. Clin Exp Vis Eye Res. 2019;2:22–9.

Franca JR, Foureaux G, Fuscaldi LL, Ribeiro TG, Rodrigues LB, Bravo R, et al. Bimatoprost-loaded ocular inserts as sustained release drug delivery systems for glaucoma treatment: In Vitro and in Vivo evaluation. PLoS One. 2014;9.

DOI: 10.1371/journal.pone.0095461.

Brandt JD, Sall K, DuBiner H, Benza R, Alster Y, Walker G, et al. Six-month intraocular pressure reduction with a topical bimatoprost ocular insert: Results of a Phase II randomized controlled study. Ophthalmology. 2016;123:1685–94.

Brandt JD, Du Biner HB, Benza R, Sall KN, Walker GA, Semba CP. Long term safety and efficacy of a sustained-release bimatoprost ocular ring. Ophthalmology. 2017;124:1565–6.

Lee SS, Dibas M, Almazan A, Robinson MR. Dose-response of intracameral bimatoprost sustained-release implant and topical bimatoprost in lowering intraocular pressure. J Ocul Pharmacol Ther. 2019;35:138–44.

Burgalasi S, Chetoni P, Panichi L, Boldrini E, Saettone MF. Xyloglucan as a novel vehicle for Timolol: Pharmacokinetics and pressure lowering activity in Rabbits. J Ocul Pharmacol Ther. 2000;16:497–509.

Saettone MF, Salminen L. Ocular inserts for topical delivery. Adv Drug Deliv Rev. 1995;16:95–106.

Leahy CD, Ellis EJ, Ellis JY, Crawford KS. Efficacy of a Topical Ocular Drug Delivery Device (TODDD) for the Treatment of Glaucoma by Telemetric Measurement of IOP in the Normal Rabbit. Invest Ophthalmol Vis Sci. 2007;48:5816.

Peng CC, Kim J, Chauhan A. Extended delivery of hydrophilic drugs from silicone-hydrogel contact lenses containing Vitamin E diffusion barriers. Biomaterials. 2010;31:4032–47.

Cao Y, Zhang C, Shen W, Cheng Z, Yu L, Ping Q. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Control Release. 2007;120:186–194.

Attama AA, Reichl S, Müller Goymann CC. Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea. Curr Eye Res. 2009;34:698–705.

Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: Development, characterization, and evaluation. J Drug Target. 2010;18:292–302.

Yu S, Wang QM, Wang X, Liu D, Zhang W, Ye T, et al. Liposome incorporated ion sensitive in situ gels for ophthalmic delivery of timolol maleate. Int J Pharm. 2015;480:128–36.

Kaur IP, Aggarwal D, Singh H, Kakkar S. Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefe’s Arch Clin Exp Ophthalmol. 2010;248:1467–72.

Aggarwal D, Kaur IP. Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm. 2005;290:155–9.

Yang H, Leffler CT. Hybrid dendrimer hydrogel/poly(lactic-Co-glycolic acid) nanoparticle platform: An advanced vehicle for topical delivery of antiglaucoma drugs and a likely solution to improving compliance and adherence in glaucoma management. J Ocul Pharmacol Ther. 2013;29:166–72.

Urtti A, Pipkin JD, Rork G, Repta AJ. Controlled drug delivery devices for experimental ocular studies with timolol 1. In vitro release studies. Int J Pharm. 1990;61:235–40.

Huang W, Zhang N, Hua H, Liu T, Tang Y, Fu L, et al. Preparation, pharmacokinetics and pharmacodynamics of ophthalmic thermosensitive in situ hydrogel of betaxolol hydrochloride. Biomed Pharmacother. 2016;83:107–13.

Li J, Tian S, Tao Q, Zhao Y, Gui R, Yang F, et al. Montmorillonite/chitosan nanoparticles as a novel controlled-release topical ophthalmic delivery system for the treatment of glaucoma. Int J Nanomedicine. 2018;13:3975–87.

Weinreb RN, Caldwell DR, Goode SM, Horwitz BL, Laibovitz R, Shrader CE, et al. A double-masked three-month comparison between 0.25% betaxolol suspension and 0.5% betaxolol ophthalmic solution. Am J Ophthalmol. 1990;110:189–92.

Spataro G, Malecaze F, Turrin CO, Soler V, Duhayon C, Elena PP, et al. Designing dendrimers for ocular drug delivery. Eur J Med Chem. 2010;45:326–34.

Avinash K, Ajay S. Formulation and evaluation of thermoreversible in situ ocular gel of clonidine hydrochloride for glaucoma. Pharmacophore. 2015;6:220–32.

Bellotti E, Fedorchak MV, Velankar S, Little SR. Tuning of thermoresponsive pNIPAAm hydrogels for the topical retention of controlled release ocular therapeutics. J Mater Chem B. 2019;7:1276–83.

Bhagav P, Upadhyay H, Chandran S. Brimonidine tartrate-eudragit long-acting nanoparticles: Formulation, optimization, in vitro and in vivo evaluation. AAPS PharmSciTech. 2011;12:1087–101.

Singh KH, Shinde UA. Chitosan nanoparticles for controlled delivery of brimonidine tartrate to the ocular membrane. Pharmazie. 2011;66:594–9.

Yang H, Tyagi P, Kadam RS, Holden CA, Kompella UB. Hybrid dendrimer hydrogel/PLGA nanoparticle platform sustains drug delivery for one week and antiglaucoma effects for four days following one-time topical administration. ACS Nano. 2012;6:7595–606.

Shivakumar HN, Desai BG, Subhash PG, Ashok P, Hulakoti B. Design of ocular inserts of brimonidine tartrate by response surface methodology. J Drug Deliv Sci Technol. 2007;17:421–30.

Sun J, Lei Y, Dai Z, Liu X, Huang T, Wu J, et al. Sustained release of brimonidine from a New composite drug delivery system for treatment of glaucoma. ACS Appl Mater Interfaces. 2017;9:7990–9.

Samy KE, Cao Y, Kim J, Konichi Da Silva NR, Phone A, Bloomer MM, et al. Co-Delivery of Timolol and Brimonidine with a Polymer Thin-Film Intraocular Device. J Ocul Pharmacol Ther. 2019;35:124–31.

Chiang B, Kim YC, Doty AC, Grossniklaus HE, Schwendeman SP, Prausnitz MR. Sustained reduction of intraocular pressure by supraciliary delivery of brimonidine-loaded poly(lactic acid) microspheres for the treatment of glaucoma. J Control Release. 2016;228:48–57.

Rathod LV, Kapadia R, Sawant KK. A novel nanoparticles impregnated ocular insert for enhanced bioavailability to posterior segment of eye: In vitro, in vivo and stability studies. Mater Sci Eng C. 2017;71:529–40.

Singh J, Chhabra G, Pathak K. Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: In vitro. ex vivo evaluation and pharmacodynamic study. Drug Dev Ind Pharm. 2014;40:1223–32.

Tamilvanan S, Kumar BA. Influence of acetazolamide loading on the (in vitro) performances of non-phospholipid-based cationic nanosized emulsion in comparison with phospholipid-based anionic and neutral-charged nanosized emulsions. Drug Dev Ind Pharm. 2011;37:1003–15.

Hathout RM, Mansour S, Mortada ND, Guinedi AS. Liposomes as an ocular delivery system for acetazolamide: In vitro and in vivo studies. AAPS PharmSciTech. 2007;8:E1–E12.

Aggarwal D, Pal D, Mitra AK, Kaur IP. Study of the extent of ocular absorption of acetazolamide from a developed niosomal formulation, by microdialysis sampling of aqueous humor. Int J Pharm. 2007;338:21–6.

Bravo Osuna I, Vicario De La Torre M, Andrés Guerrero V, Sánchez Nieves J, Guzmán Navarro M, De La Mata FJ, et al. Novel water-soluble mucoadhesive carbosilane dendrimers for ocular administration. Mol Pharm. 2016;13:2966–76.

Chen R, Qian Y, Li R, Zhang Q, Liu D, Wang M, et al. Methazolamide calcium phosphate nanoparticles in an ocular delivery system. Yakugaku Zasshi. 2010;130:419–24.

Li R, Jiang S, Liu D, Bi X, Wang F, Zhang Q, et al. A potential new therapeutic system for glaucoma: Solid lipid nanoparticles containing methazolamide. J Microencapsul. 2011;28:134–41.

Bhalerao H, Koteshwara KB, Chandran S. Brinzolamide dimethyl sulfoxide in situ gelling ophthalmic solution: Formulation optimisation and In Vitro and In Vivo Evaluation. AAPS PharmSciTech. 2020; 21:1–15.

Wang F, Bao X, Fang A, Li H, Zhou Y, Liu Y, et al. Nanoliposome-encapsulated brinzolamide-hydropropyl-β-cyclodextrin inclusion complex: A potential therapeutic ocular drug-delivery system. Front Pharmacol. 2018;9:1–9.

Tuomela A, Liu P, Puranen J, Rönkkö S, Laaksonen T, Kalesnykas G, et al. Brinzolamide nanocrystal formulations for ophthalmic delivery: Reduction of elevated intraocular pressure in vivo. Int J Pharm. 2014;467:34–41.

Kouchak M, Mahmoodzadeh M, Farrahi F. Designing of a pH-Triggered Carbopol®/HPMC In Situ Gel for Ocular Delivery of Dorzolamide HCl: In Vitro, In Vivo, and Ex Vivo Evaluation. AAPS PharmSciTech. 2019;20:1–8.

Warsi MH, Anwar M, Garg V, Jain GK, Talegaonkar S, Ahmad FJ, et al. Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: Pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits. Colloids Surfaces B Biointerfaces. 2014;122:423–31.

Ammar HO, Salama HA, Ghorab M, Mahmoud AA. Nanoemulsion as a potential ophthalmic delivery system for dorzolamide hydrochloride. AAPS PharmSciTech. 2009;10:808–19.

Kouchak M, Bahmandar R, Bavarsad N, Farrahi F. Ocular dorzolamide nanoliposomes for prolonged IOP reduction: In-vitro and in-vivo evaluation in rabbits. Iran J Pharm Res. 2016;15:205–12.

Kouchak M, Malekahmadi M, Bavarsad N, Saki Malehi A, Andishmand L. Dorzolamide nanoliposome as a long action ophthalmic delivery system in open angle glaucoma and ocular hypertension patients. Drug Dev Ind Pharm. 2018;44:1239–42.

Jansook P, Stefánsson E, Thorsteinsdóttir M, Sigurdsson BB, Kristjánsdóttir SS, Bas JF, et al. Cyclodextrin solubilization of carbonic anhydrase inhibitor drugs: Formulation of dorzolamide eye drop microparticle suspension. Eur J Pharm Biopharm. 2010;76:208–14.

Franca JR, Foureaux G, Fuscaldi LL, Ribeiro TG, Castilho RO, Yoshida MI, et al. Chitosan/hydroxyethyl cellulose inserts for sustained-release of dorzolamide for glaucoma treatment: In vitro and in vivo evaluation. Int J Pharm. 2019;570:118662.

Hsu KH, Carbia BE, Plummer C, Chauhan A. Dual drug delivery from vitamin e loaded contact lenses for glaucoma therapy. Eur J Pharm Biopharm. 2015;94:312–21.

Lai JY, Luo LJ, Nguyen DD. Multifunctional glutathione-dependent hydrogel eye drops with enhanced drug bioavailability for glaucoma therapy. Chem Eng J. 2020;402:126190.

Liao Y Te, Lee CH, Chen ST, Lai JY, Wu KCW. Gelatin-functionalized mesoporous silica nanoparticles with sustained release properties for intracameral pharmaco-therapy of glaucoma. J Mater Chem B. 2017;5:7008–13.

Agban Y, Lian J, Prabakar S, Seyfoddin A, Rupenthal ID. Nanoparticle cross-linked collagen shields for sustained delivery of pilocarpine hydrochloride. Int J Pharm. 2016;501:96–101.

Hillman JS. Management of acute glaucoma with pilocarpine soaked hydrophilic lens. Br J Ophthalmol. 1974;58:674–9.

Khandan O, Kahook MY, Rao MP. Fenestrated microneedles for ocular drug delivery. Sensors Actuators, B Chem. 2016;223:15–23.

Jiang J, Gill HS, Ghate D, McCarey BE, Patel SR, Edelhauser HF, et al. Coated microneedles for drug delivery to the eye. Investig Ophthalmol Vis Sci. 2007;48: 4038–43.

Thakur RRS, Fallows SJ, McMillan HL, Donnelly RF, Jones DS. Microneedle-mediated intrascleral delivery of in situ forming thermoresponsive implants for sustained ocular drug delivery. J Pharm Pharmacol. 2014;66:584–95.

Monem AS, Ali FM, Ismail MW. Prolonged effect of liposomes encapsulating pilocarpine HCl in normal and glaucomatous rabbits. Int J Pharm. 2000;198:29–38.

Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release. 2005;102:23–38.

Jarho P, Järvinen K, Urtti A, Stella VJ, Järvinen T. Modified β-cyclodextrin (SBE7-β-CyD) with viscous vehicle improves the ocular delivery and tolerability of pilocarpine prodrug in rabbits. J Pharm Pharmacol. 1996;48:263–9.

Orasugh JT, Sarkar G, Saha NR, Das B, Bhattacharyya A, Das S, et al. Effect of cellulose nanocrystals on the performance of drug loaded in situ gelling thermo-responsive ophthalmic formulations. Int J Biol Macromol. 2019;124:235–45.

Thakur RRS, Tekko I, McAvoy K, McMillan H, Jones D, Donnelly RF. Minimally invasive microneedles for ocular drug delivery. Expert Opin Drug Deliv. 2017;14:525–37.

Karthikeyan D, Bhowmick M, Pandey V, Nandhakumar J, Sengottuvelu S, Sonkar S, et al. The concept of ocular inserts as drug delivery systems: An overview. Asian J Pharm. 2008;2:192–200.

Singh RB, Ichhpujani P, Thakur S, Jindal S. Promising therapeutic drug delivery sys tems for glaucoma: A comprehensive re view. Ther Adv Ophthalmol. 2020;12:1–17.

Bertens CJF, Gijs M, Van Den Biggelaar FJHM, Nuijts RMMA. Topical drug delivery devices: A review. Exp Eye Res. 2018;168:149–60.